ARTIFICIAL INTELLIGENCE 231

RESEARCH NOTE

Reasoning about Truth

G. Priest

Department of Philosophy, University of Queensland,
St. Lucia, Brisbane, Queensland, Australia 4047

Introduction

Any Al reasoning system with reasonable ambitions must have a way of
describing, specifying or representing situations, states of affairs or wot not.
Moreover, any Al reasoner that wants to perform cognitive reasoning, a
central aspect of people’s intelligence, must be able to express and reason
about the cognitive attitudes that are taken, by the reasoner and others, to
those representations: whether they are known, believed, true, provable, etc.
(all quite distinct notions). Thus, for example, a person (or processor which is
part of a distributed system), A, may reason “What B has told me in the past
has usually been true. B now tells me that he has just heard from C. Hence I
may reasonably believe that B has heard from C.”

In the past several years, we have seen a number of studies concerning the
Al handling of cognitive reasoning. (See, for example, any number of the
papers in [9].) These studies have concentrated on only some cognitive
attitudes, particularly, knowledge and belief. The notion of truth has been
largely ignored; and this despite the fact that it is, arguably, one of the more
central notions. For example, it is one of the distinguishing characteristics
between knowledge and belief; it is a necessary condition of adequate proof;
etc. The recent paper by Perlis [12], which does address the problem of
reasoning about truth is therefore highly timely. Moreover, it creates yet
another bond between Al and logic;' for reasoning about truth is something
that has formed a central part of logical investigations this century (though, it
should be said, this does not mean that there is a consensus in the area.
Indeed, the area of the semantic paradoxes is perhaps the most contentious in

modern logic).

' As will probably be clear from this paper, I write from the logicians’ side of this partition;
however, I hope to succeed, at least partly, in crossing it.
' Artificial Intelligence 39 (1989) 231-244
0004-3702/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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The paper falls into two parts. In the first part I will describe Perlis’
construction and argue that it has certain inadequacies. In the second part I
will describe an approach to the problem of reasoning about truth which I
think is preferable, and explain why. The approach draws on fairly recent work
in a branch of logic called “paraconsistent logic.” This part of the paper may
therefore serve the function of introducing the reader to parts of logic, relevant
to Al, of which they may not be aware.

1. Semantic Closure

The aim of an Al account of reasoning about truth (and related notionS) 1is to
produce some formally tractable way of representing the legitimate inferences
that cognitive reasoners are wont to make about truth (and its associated
notions). Obviously, the first prerequisite of such an account is to have a
language with a predicate “is true” (which I will write as T'). Syntactically, the
predicate is to apply to the representations of states. We may conveniently take
these to be sentences. This is not only simple and apparently adequate, but is
also the dominant line that logicians have taken since Tarski, and so allows the
application of any established logical technology. '

What, however, makes this predicate a truth predicate? If we survey the
inferences that characteristically involve the notion of truth, we find essentially
two. We infer “qa is true” from «, and a from “g is true” (where @ is a noun
phrase which we can think of as a name for the sentence o). This suggests that
the truth predicate, T, is characterized by the inference scheme:

Tao a,

which is called by logicians the T-scheme.’

It is perhaps rather surprising that such a trivial form of inference leads to
trouble. Yet it does so. For all we need is a modicum of self-reference,
obtainable in numerous ways, to find a state which claims that it, itself, is not
true, i.e. a state, B, of the form —17B. Applying the T-scheme to this, we
obtain:

B 1B
and hence:
B ATB.
?Since various notions of implication will play a role in this paper, let me comment briefly on my
notation. I will use = as a generic implication connective (where its precise properties are not at
‘issue); D as material implication (always defined using negation and disjunction); and — as a bona

fide implication guaranteed to satisfy at least modus ponens. Their respective bi-implications are
&, = and ©.
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This contradiction, the liar paradox, in itself, might not be too much of a
problem. After all, is it surprising that such counter-intuitive results follow
from consideration of such a pathological state? Unfortunately, if we then
throw in the principle of standard logic that anything can be deduced from a
contradiction a real problem arises. For the reasoner who has gone through
this process can now infer everything. Which is slightly too much.

A dodge that logicians have used since the 30s to avoid this problem is to
separate out the system to whose entities truth is attributed (the object
‘language) and the system which attributes truth (the metalanguage), and claim
that these must be distinct. (The construction is due to Tarski, though it should
be said, in fairness to him, that he did not think that ordinary language
reasoning about truth worked in this way.) Thus, the claim that this very state
is not true cannot be expressed at all. If it could be then, since it attributes
truth, it must be in the metalanguage but, since it is that to which truth is
attributed, it must be in the object language. Hence this is impossible.

In his paper Perlis argues, quite correctly, that this fix will not work.
Cognitive representations are not intrinsically typed in this fashion, and any
attempt to impose such a partition is not only artificial, but renders a great deal
of perfectly correct and unproblematical reasoning impossible. This point is
one of which logicians are now acutely aware, and most would agree that Perlis
is quite right. As a result of this awareness, in recent years logicians have been
investigating systems which aim at semantic closure, that is, systems that can
talk about the truth of their own sentences. Characteristically, these ap-
proaches reject, or at least weaken the 7-scheme. Such approaches all face
well-known problems. (See [17; 18, Chapter 1] for references and a discussion
of the various views.) Perlis produces a novel such approach, which is not only
simple, but works within the framework of orthodox logic. To this I now turn.

2. The T*-Scheme

Perlis’ suggestion is simply to replace the T-scheme by what we will call the
T*-scheme:”

Ta=a*, | (1)

where a* is the result of putting « into normal form (either conjunctive of
disjunctive), and then replacing all occurrences of the form —17B by TB.
Thus, in a*, only atomic sentences are negated, and atomic sentences contain-
ing the truth predicate are never negated. Since a formula is logically equival-
ent to its normal form, this preserves the T-scheme for those sentences that do
not contain 7, and even for those that do, provided that the occurrences of T
are not within the scope of a negation.

*In practice, Perlis also assumes other principles verified by the model construction to follow,
such as (2) below, but which do not, as far as I can see, follow from T*.
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The T*-scheme may look a little strange, and is certainly unlikely to occur to
anyone a priori. The mystique may be removed, however, by considering its
intuitive motivation.

As Perlis describes it, this builds on an idea of Kripke. First, we determine a
class of sentences whose truth value may be fixed in a certain (transfinite)
recursive fashion. These include (properly) all the sentences which do not
contain 7. Call these sentences grounded. The negation of a true grounded
sentence is a false grounded sentence, and vice versa. On the Kripke construc-
tion, sentences that are not grounded are neither true nor false. The truth
predicate applies truly to true sentences, falsely to false sentences, and
neither-true-nor-falsely to ungrounded sentences. Consequently, Ta always has
the same truth value (or lack of it) as a.

As an analysis of truth. Kripke’s construction is problematic for a number of
reasons. One is that it does not dispense with the object language/metalan-
guage distinction. This is because the fact that a sentence is not true cannot be
correctly expressed in the language itself. For if « is neither true nor false then
—Ta is neither true nor false, not true as required. Moreover, not only does
the T-scheme fail (if @ is neither true nor false, so is the instance of the
T-scheme for it), but no reasonable approximation to it seems to be available.

Perlis’ suggestion is, in effect, to define a new classical interpretation of the
language, .%, such that the truth conditions of atomic sentences not containing
T are the same as those in the Kripke interpretation, and those for sentences

containing T are:

Ta is true in J iff « is Kripke-true
Ta is false in ¥ otherwise.

It follows that all sentences are either true or false (in $). Moreover, all
Kripke-true sentences are true (in .#), and all Kripke-false sentences are false
(as a simple induction shows). It therefore follows that

TaD a

is valid in #. The converse, however, is not. For if « is a true Kripke-neither
sentence the consequent is true and the antecedent is false. Thus, the T-
scheme, as is to be expected, fails in general. However, the T*-scheme is
valid. I leave the proof of this as an exercise for those familiar with Kripke’s
construction. Thus, we see what semantics for the truth predicate really
underlie the T*-scheme.

4 Hint. First show the result for « in normal form. The only nontrivial part of this argument
concerns negated T-sentences; but here one can use the fact that 178 is Kripke-true iff T8 is
Kripke-true. Next, observe that in the Kleene strong three-valued logic a is equivalent to its
normal form «'. Hence, Ta is equivalent to Te’. Finally, observe that a’* is just a*.
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To see what happens to the liar paradox in these semantics, note that
(Ta A Tg) (2)

is true (in $) for every a. Next, note that if B is the liar sentence, the
T*-scheme gives:

TB=T2B (=B%).

Thus, by (2) and classical logic; 71 7B, i.e., B. The inference to 7 is, however,
blocked Thus, the contradiction does not arise; though we do have the rather
odd B A1 TB. Moreover, $ provides a consistent interpretation of the 7*-
scheme (and (2)), which establishes that no other contradictions arise in the

theory.’

3. Criticisms of This Account

Though Perlis’ solution to the problem of how to formalize reasoning concern-
ing truth is neat, it will not work. It is wrong for both theoretical and practical
‘reasons. Let us start with the theoretical reasons.

One objection to Perlis’ construction is provided by the very fact that the
T-scheme does not hold in general. There are a number of arguments to the
effect that the 7-scheme must hold for the truth predicate, that it, indeed,
characterizes truth. Some of the arguments are as ancient as Aristotle, and
some as modern as Frege. I will not rehearse them here, since I do not wish
this to be a philosophical paper. (Some of these arguments can be found in [18,
Sections 4.2-4.3].) Let us, therefore, move on to more technical objections.

One of the weaknesses of Kripke’s construction is that it does not dispose of
the object language/metalanguage distinction, as I noted above. But Perlis’
construction is in exactly the same boat. For there is still no way in Perlis’
construction of expressing the fact that a sentence is true (in #)! The easiest
way to see this is just to note that if the expressive power of the language is
sufficiently strong then, since the logic is classical, we can apply Tarski’s
theorem to show that the set of true sentences cannot be defined by any
formula with one free variable. Thus Perlis’ own talk of truth (in interpretation
#) must be conceived of as occurring within a distinct metalanguage—which
renders the content of his claim to have got rid of such a metalanguage (p. 312)
unclear.

It follows, in particular, that the formula Tx does not express the claim that x
is true. In fact, as the semantics make clear, Ta is true iff « is Kripke-true; but

*The model construction in Perlis’ paper is somewhat different, but the final model is the same.
Again, the proof is not difficult to find, and I leave it as an exercise. Hint. Show by induction that
the extension of the truth predicate is the same at each level of the Kripke and Perlis hierarchies.
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there are plenty of sentences that are true but not Kripke-true. As we noted, 1f
B is the liar sentence, B A 71T is true (in $). Thus, B is one such formula.®
Nor is T even a good approximation to truth (in ), since some of the most
fundamental facts about truth and T differ: For example, for every sentence
either it or its negation is true; but there are a such that Ta v TTa is false.
Similarly, if « is not true then its negation is true; but there are a for which
—1Ta D Taa fails. (For counter-examples to both, take a to be Kripke-
neither.)

As we see, Perlis’ account is theoretically flawed. It might be suggested,
however, that this doesn’t matter since the point of the construction is not a
theoretical but a practical one. Specifically, the aim is to construct a formaliza-
tion that can represent our ordinary reasoning concerning truth; and, it may be
suggested, the T*-scheme is, in fact, adequate for this. Indeed, Perlis provides
some nice examples of inferences involving the T-scheme which are accounted
for equally by the T*-scheme.

Unfortunately, the theoretical inadequacies inevitably flow over - into practi-
cal ones. Suppose, for example, that someone has the job of having destroyed
all and only those books that contain some truth, i.e., they act on the
command:

dx (Tx & book(y) & occurs_in(x, y)) = destroy(y).

They learn of book b that it contains inconsistent assertions on pp. 91 and 197.
They then reason that one of these must be true, and hence that the book is to
be destroyed. (The formalization of this is obvious.) The situation might be
screwy, but the reasoning is perfectly sound and correct. Yet it cannot be
represented in Perlis’ approach, just because, as we noted two paragraphs
back, Ta v T« is not available.

Let me give another example, which concerns the failure of the T-scheme,
and which is a slight modification of one of Perlis’ own. Suppose we are given
that anyone who speaks truly is a human. (Vampires, the other kind of
inhabitant of Lower Slobbovia, always lie.) Two speakers, Od and Id, are
heard to speak as follows:

Id: Everything I say is not true.
Od: What Id says is not true.

We can show that Od is human as follows. Suppose that what Id says is true.
Then everything that Id says is not true. Hence, by reductio, what Id says is not
true. But Od said just that. Hence he spoke truly. He is therefore a human. I
leave a formalization of this to the interested reader. The important point to

SPerlis, in effect, admits that his truth predicate just means Kripke-true: “. .. T[rue] is to be
taken to mean Kripke’s sense, i.e., grounded and true....” (p. 312).
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note is just that having deduced that what Id says is not true (M Tw), to then
infer that Od spoke the truth (11 Tw D TTw) is precisely an instance of (the
half of) the T-scheme that does not hold on Perlis’ account.

For good measure, we can also infer that Id is human. We have established
that what Id said is not true. Thus, Id has said something true; hence he is
human. Again, this reasoning cannot be represented in Perlis’ construction,
just because the principle 17 D e fails. ’

Notice that there is nothing problematic about either of the above examples
due to inconsistency. Both situations are quite consistent. (To see that the
second is consistent just suppose that Od and Id are human and that Id has said
(at least) one true thing.) There is therefore no paradoxical “funny business”.
We see that Perlis’ construction does not allow for correct and unproblematic
cognitive reasoning about truth. Hence, it is not only theoretically incorrect,
but also practically inadequate.

4. A More Adequate Solution

I now wish to propose a more adequate solution. The T-scheme, we have seen,
must be part of any adequate representation of cognitive reasoning. We have
also seen that this gives rise to contradictions. It would appear that this must be
accepted. What needs to be rejected is the view that everything may be
deduced from a contradiction. After all, the fact that contradictions may arise
in self-referential situations is not particularly surprising, or even worrying.
What is worrying (and also surprising to someone who has not been indoctri-
nated by a course on Frege/Russel logic) is that once a contradiction has been
inferred, everything follows: ex contradictione quodlibet. 1f this rule fails then
there is no reason why the contradictions produced by the paradoxes of
cognitive reasoning should not be allowed to stand: they need do no harm.”

Logics where ex contradictione fails are called paraconsistent logics, and
there are many such, including relevant logics. Some are now familiar to
logicians, but to computer scientists they may be less so. (Though some of the
more elementary paraconsistent logics have appeared in the AI literature. See,
e.g. Levesque [10], Fagin and Halpern [8].) I shall not attempt a review of such
Jogics here. This can be found in [20; 21, Chapter 5].) Instead, I will describe
one of the simplest and most natural such logics, LP (see Priest [15; 18,
Chapter 5]), and show how it can be applied to the present situation.

LP is obtained by relaxing the classical assumption that sentences cannot be
both true and false. Thus, an interpretation assigns to each atomic sentence

"In fact, it has been argued quite independently of the paradoxes of cognitive reasoning that
inference engines suitable for reasoning from complex data should be paraconsistent. (See, e.g.
Belnap [2].) For any but the most simplistic databases and rule systems are liable to be
inconsistent. Further, since there is no decision procedure for inconsistency, there is no general
and effective way that the inconsistencies can be weeded out. We therefore have to live with them.
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one of the truth values {1} (true and true only), {0} (false and false only), and
{1,0} (both). Truth conditions for nonatomic sentences are given in the
familiar classical way, except that truth and falsity, now being independent,
must each be considered. Thus, let us say that « is true (under an interpreta-
tion) iff 1 is in its truth value (under that interpretation); similarly, it is false iff
0 is in its truth value. Then, under an interpretation:

—l« is true iff « is false,
—a is false iff « is true,

a A B is true iff « is true and B is true,
a A B is false iff « is false or B is false.

Disjunction is treated dually. @ D B is defined as e v B. Quantifiers, as in
normal accounts, are just thought of as (possibly infinitary) conjunctions and
disjunctions over the domain of interpretation. As can be checked, these truth
conditions are sufficient to give all formulas one of the three truth values.
Logical consequence is defined in the standard way. An interpretation is a
model of a formula iff the formula is true in that interpretation; it is a model of
a set of formulas iff it is a model of every formula in the set; and

. 3 F aiff every model of 3 is a model of a.

It is a simple job to show that this logic is paraconsistent. Take the evaluation
that makes p both true and false, and g false only. This makes p A —1p true
(and false) and g not true. (LP might be more familiar to some people as
Kleene’s strong three-valued logic with middle element designated.)

Let me mention, in passing, one variation on these semantics. This is
obtained by allowing any subset of {1, 0}, including the empty set, to be a truth
value. Otherwise details are the same. These semantics are Dunn’s semantics
for Anderson and Belnap’s system of zero-degree entailment. (Discusssed by
Belnap [2], used by Levesque [10].) The main difference between these two
systems is that the three-valued system validates the law of excluded middle,
a Vv e, and indeed all classical tautologies, whilst the four-valued system has
no logical truths. In the present context, I take this to be a distinct advantage
for the three-valued system. For the aim is to capture ordinary reasoning about
truth; and the law of excluded middle is an integral part of much of this.

LP has a number of simple proof theories. (For example, a tableau system is
given by Lin [11].) I will give a natural deduction system, sound and complete
with respect to these semantics. This is obtained by modifying a standard
natural deduction system for first-order logic (that of Prawitz’ [14]). The
modification is simply to replace the ordinary negation rules (-1 and 1 E) by:
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o — LEM
. a Vv 1o
— 11
_@___E CON DN
1 a .

where in CON, « is the only undischarged assumption, and no application of
LEM occurs in its subproof. If we delete LEM we obtain a proof theory for
zero-degree entailment. If we drop the restriction on CON, we obtain classical
logic.

Having got the background logic sorted out, to provide a system to reason
about truth, we merely add the two rules:

o g 2 om

o Ta
where « is a closed formula. Let us call this system of rules TLP. As it stands,
TLP is consistent (that is, no formula of the form g A =18 is provable). This
can be proved by noting that LP is consistent, and then observing that TLP can
be collapsed into LP proofs merely by deleting T’s and underlinings.) The
consistency is due, however, to the fact that, so far, no self-referential
machinery has been provided. As soon as this is provided, inconsistency
results. Thus, suppose we can produce a formula, @, such that we can establish
a=-1Ta; it is then a simple matter to deduce a A T1a. I leave this as an
elementary exercise. _

Although some contradictions are now provable, it would obviously be
disastrous if all were (i.e. if the system was trivial). Fortunately, then, it can be
shown that this is not the case. It is possible to construct nontrivial TLP models
of first-order arithmetic (which certainly contain enough self-referential ma-
chinery), which show this. See Dowden [5]. In particular, anything that is
Kripke-false is not provable.

5. The Disjunctive Syllogism and Minimal Inconsistency

The inference engine TLP is not subject to the objections I brought against
Perlis’ account. As may easily be checked, the T-scheme: Ta = a is provable;
and because of the 7-rules the T-predicate defines the set of truths in any
interpretation. Thus, the account is not subject to Tarski’s theorem concerning
the indefinability of truth.

There is, however, one important objection. Just because the logic is
paraconsistent, some inferences that are classically valid are LP-invalid. Ex
contradictione quodlibet, of course, fails. However, this is well known to follow
from simpler and less intuitively puzzling inferences. One of these must
therefore have to fail. In fact, what fails is the disjunctive syllogism:

a “avpB /B
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detachment for material implication (sometimes called modus ponens, though
this name is appropriate only if D is a genuine implication connective, a claim
that most logicians would now doubt—and something the very failure of
detachment would show to be false). It might be thought that if the disjunctive
syllogism fails then the system of inference is too weak to permit any
interesting conclusions. This, however, is quite false as we have already seen.
(The illusion may be caused by the fact that in many theorem provers the
disjunctive syllogism is the only propositional rule.) In fact, the disjunctive
syllogism is the only classically valid inference to fail (in the sense that if this is
added to LP classical logic results). Yet it is reasonable to object to my
proposal that the failure shows its inadequacy, since this inference is a part of
our standard reasoning—about truth or anything else. Indeed, both the
examples I gave in the previous section apply detachment to the T-scheme.

There are two ways to meet this objection, both involving extensions of the
inferential machinery of LP. The simplest way is as follows. Observe that to
obtain an LP counter-example to the disjunctive syllogism (or any other
classically valid but LP-invalid inference) we must render the situation inconsis-
tent (by making some formula both true and false). Now, it is both plausible
and natural to take consistency as a default assumption. (For a defence of this
see [18, Chapter 9].) In that case it makes sense to implement a nonmonotonic
logic that implements this default, and which therefore allows the disjunctive
syllogism provided that no pertinent inconsistency can be proved.

The simplest way of doing this is as follows. (I outline only the propositional
case. Full details are given by Priest [19].) If v is a propositional LP evaluation,
let »! be { p: p is a propositional parameter and p A 1p is true under v}. v!isa
measure of the inconsistency of an interpretation. Given a set of formulas, 2,
call v a minimally inconsistent (mi) model of 3 iff (i) » is a model of %, and (ii)
if ! is properly contained in »! then u is not a model of 3. That consistency is
a default assumption means that we suppose there to be no more inconsistency
than we are forced to suppose; and a natural way of making this idea precise is
simply to restrict ourselves to mi models. Thus, define the default consequence

relation |=_ as follows:
3 |, a iff every mi model of 3 is a model of .

This logic, LP_, is nonmonotonic and paraconsistent. (As may easily be
checked {mip Vv q, p} . ¢; but {mp v q, p, p ATp} ¥, g.) Tt extends LP,
and gives all classical consequences if the premises are consistent. (See Priest
[19] for proofs.) Hence, in consistent situations, the disjunctive syllogism and
all other classical inferences are valid. In particular, both of the examples of
Section 3 (and all other examples where inconsistency does not rear its ugly
head) can be represented in terms of LP,_,, since these situations are consistent.
Moreover, even in inconsistent situations, LP, still allows us to use the
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disjunctive syllogism provided only that the inconsistencies do not “get in the
way.” (Thus, for example, {p, 7p Vv q, r A r} F,, q.) Hence LP validates
all classical inferences except where inconsistency would make them naturally
doubtful anyway.

6. Relevant Logic

The second way of meeting the objection is to extend the language of LP to
include a genuine implication operator, —, which satisfies (inter alia) detach-
ment (modus ponens)—but not the principle (@ A 71a)—> B. The T-scheme can
now be formulated using this connective, and detachment from it becomes
possible. The examples of Section 3, for example, can be represented in this
way.

A genuine implication operator can be added to LP in numerous ways.
Relevant logicians, in particular, have studied how to give the semantics of
such an operator; and LP can be embedded in relevance logics.® As I observed
in Section 4, the semantics of LP are a fragment of the semantics of zero-
degree entailment. One possible approach is therefore to work with the
extended semantics. This is unsatisfactory for two reasons. First, one looses all
classical tautologies, such as the law of excluded middle (as I observed);
second, and in any case, these semantics do not allow for nesting the
connective —, something one would surely want. It is better, therefore, to
embed LP semantics in those of a full relevant logic.

This is not the place to go into the semantics of relevant logics in detail.
(Details can be found in Dunn [7] or Routley et al. [22].) Let me, however,
indicate one embedding. One kind of semantics for relevant logics is based on
an algebraic structure of the form (%, A, v, *,=>, %), where (£, A, v, %)
is a De Morgan lattice, & is a certain filter on the lattice and = is a binary
operation satisfying at least the condition: a<b iff a= b € F. An algebraic
evaluation is a map from formulas into the lattice such that A, v, *, and >
are the interpretations of A, v, =1 and —, respectively. Semantic con-
sequence is defined in terms of membership-of-# preservation under all
evaluations. Given any LP interpretation it is possible to construct such an
algebra and embed the interpretation in it. Conversely, any such algebra can
be cut down to an LP interpretation. This shows that LP is exactly the
extensional (i.e., A, v, 71) fragment of the relevant logic. (Full details can be
found in [16, Appendix].)

It is worth observing that many theories based on relevant logics can be
shown to be nontrivial even when the 7-scheme is available. To see this, note
that Brady [4] has shown a large class of relevant logics to be nontrivial

® A suitable implication operator does not have to be relevant, however. See [18, Chapter 6].
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(though incohsistent) when augmented by the abstraction scheme of naive set
theory: '

xE{y; e} o(y/x) (Abs)

where / denotes substitution, and x is free for y in ¢. Now, let @ be {x; a},
where x is the least variable, in some standard enumeration, not occurring in

a; and let Tx be @ € x. Then by (Abs):
Tasw@e{x;a}la.

Hence, any such logic can nontrivially model the T-scheme.

7. Final Observations

The last two sections explain different ways of extending LP so that suitable
detachments are available. Which of these is preferable on a given occasion
may depend on the context. Having a genuine implication connective will not
take care of a detachment if the major premise cannot be expressed as a
genuine conditional; LP,, will (consistency permitting). But LP, will not allow
one to express an indefeasible connection between a and B (i.e., one where
one can always get from « to B); having a genuine conditional will. Maybe, on
occasions, it will be necessary to use both of these devices, though I have no
example of this to offer. At any rate, I take it that, between them, they
overcome the objection. Let me finish with four pertinent but miscellaneous

comments.

(1) The approach to reasoning about truth that I have advocated accepts the
T-scheme and uses a paraconsistent logic to accomodate the -consequent
inconsistencies. It might be suggested that another possible line is to accept the
T-scheme, but accommodate the inconsistencies via some other mechanism,
for example, by applying truth maintenance techniques. (See, e.g., Doyle [6].)
Thus, for example, starting with an instance of the T-scheme Ta ="1Ta
marked IN, the TMS would mark it OUT as soon as it noted that from it and it
alone a A T1a follows.

It would be hubris to claim that no approach like this can be made to Work
However, any such approach based on classical logic faces a pretty devastating
objection based on Curry paradoxes. (See Priest [16; 18, Chapter 6].) Suppose
that the connective => satisfies both detachment and absorption
(a=>(a=>B) / a= B). Suppose that we have suitable self-referential ma-
chinery, and thus, for an arbitrary formula, B8, can construct a formula Ta = B
whose name is a. The instance of the T-scheme for a is: Ta & (Ta = B).
Now, absorption gives Ta = B; whence detachment from right to left gives Ta.
Putting these together, again by detachment, gives 8. Thus an arbitrary
formula follows from the T-scheme, even without the help of ex contradictione.

-
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Thus, running a TMS on a set of assumptions that includes the T-scheme
would be just like running a TMS on the set of assumptions that contains all
formulas. The results would be just as arbitrary, and just as meaningless. They
would reflect nothing but the order of backtracking.

Just for the record, it is worth noting that LP and certain relevant logics do
not fall foul of Curry paradoxes, as the nontriviality results cited above show.
This is because LP does not validate detachment for material implication, and
suitable relevant logics do not contain absorption (though some relevant logics
do). There is as yet no nontriviality proof for LP, with the T-rules, but the
Curry arguments certainly break down. Although {Ta=(TaDp)} Fm P
{Ta =(Ta Dp), TB=(TB D1p)} gives neither p nor 71p in LP_’ ‘

(2) Secondly, while I am on the subject of truth maintenance: it might be
suggested that contradictions play an essential role in belief revision (when we
find one we revise) and that the use of a paraconsistent logic will stop this.
This, however, is false. Using a paraconsistent logic does not prevent the
revision of inconsistent beliefs. It just makes revision optional rather than
mandatory. The suggestion does raise the question of when contradictions
should occasion belief revision, but this is far too big an issue to take further
here.!° Tt is worth noting, however, that the nonmonotonic logic LP_, indicates
one way in which beliefs may be revised in the light of new contradictions.

(3) The third observation concerns other paradoxes of cognitive reasoning.
It is not only truth that is known to lead to paradoxes, but plausible conditions
on belief, knowledge, proof and other intensional operators similarly lead to
contradictions. (See, €.g., Asher and Kamp [1], Thomason [25], Perlis [13] for
discussion and references.) It would take me too far afield in this paper to
discuss these. But the fact that there is little agreement about how to handle
them attests to the fact that all proposed solutions are problematic. Here I note
only that these paradoxes in cognitive reasoning can be handled in exactly the
same way as those concerning truth: we simply add the appropriate rules of
proof for reasoning about knowledge, belief, etc., and allow the contradictions
to stand, since they need do no harm.

(4) The final comment concerns the automated implementation of the
systems I have described. Though it is simple enough to write algorithms for a
number of these (for example, a proof-tree search will do for LP, and a model
search will do for propositional LP,) the problem of efficient algorithms
remains largely to be investigated. Only for relevant logics has a start been
made on this. Details can be found in Thistlewaite et al, [23, 24] and Bollen

[3].

°The following are mi-model counter-examples for p and —1p respectively: p false only, TB true
only, Ta both; p true only, Ta true only, T8 both. o

The issue is taken up by Priest [18, Chapter 7].
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